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ABSTRACT 

Modeling and simulation efforts frequently involve loosely coupled workflows. Automation of 
workflows, data exchanges, and simulation software execution is a productive and often desired feature or 
improvement for enhancing consistency of results and productivity of the analyst. It facilitates cross-
collaboration of different analysts of multidisciplinary simulation by streamlining data exchange 
processes across local and high performance computing resources. This report proposes a high-level, 
extensible workflow module to enable consistent and efficient use of tools integrated into the Nuclear 
Energy Advanced Modeling and Simulation (NEAMS) Workbench with as little user intervention as 
possible. 

1. INTRODUCTION 

The Nuclear Energy Advanced Modeling and Simulation (NEAMS) Workbench provides a common 
analysis environment for executing NEAMS software [1], to include neutronics [2,3], thermal hydraulics 
[4], fuel analysis and performance [5], and associated model uncertainty quantification and optimization 
[6, 7, 8]. The workbench includes the open-source Workbench Analysis Sequence Processor (WASP) [9] 
toolkit for domain-specific language processing and workflows. Together, NEAMS Workbench and 
WASP provide a flexible platform from which additional analysis capabilities can be added, as 
demonstrated by the development of the Economics Dispatch Genetic AlgoRithms code, known as 
EDGAR [10]. The NEAMS Workbench and its Miniconda-managed Python runtime environment layer is 
well positioned to facilitate loosely coupled workflows on desktop machines and high-performance 
computing (HPC) platforms. The following sections describe the specific problem scope and propose 
high-level design for a workflow manager and its modules in the NEAMS Workbench. 
 

2. PROBLEM SCOPE 

The workflow module is intended to automate data transfers and consolidate input parameters into a 
concise workflow input file. User input errors are significantly reduced when consolidating parameters 
and automating data exchanges. Furthermore, the workflow module can optimize execution by managing 
concurrent branches of the workflow. Specifically, the workflow module must facilitate data and loosely 
coupled application execution flow in manner that preserves transparency of operation and maximizes 
efficiency for the user and the user’s workflow. Figure 1 is excerpted from the introductory Workbench 
paper [11], and it highlights the original high-level vision that the proposed workflow module intends to 
realize. 
 



 

 

  

 
Figure 1. Original conceptual design of the workflow execution and data exchanges. 

A hypothetical workflow might involve (1) a mesh-based neutronics code, (2) a mesh generator, and 
(3) a nuclear cross section data generator. Many of these workflow steps can be completed by alternate 
codes that the user finds preferable. The workflow module must provide a classification of modules that 
facilitates overriding code-specific parameters. This design element will serve to consolidate class-
specific parameters and will reduce the burden on module developers as they subclass a workflow 
component for a specific application. Figure 2 illustrates the data flow for the example workflow 
involving cross sections, meshing, and neutronics analysis.  
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Figure 2. Example dataflow for cross-section, mesh, and neutronics. 

 
The workflow input will describe the fundamental workflow parameters needed by the incorporated 
workflow modules. These parameters will be captured in a common model from which each module can 
retrieve inputs and store outputs. Figure 2 also shows that there are two cross section (XS) generator 
module plugins, highlighting an important aspect of the design, which is to facilitate reuse of class-
specific common logic. The MC2-3 code available from Argonne National Laboratory and the Shift code 
from Oak Ridge National Laboratory are both part of the NEAMS software suite. The XS-Generator 
module will retrieve and check necessary data from the common module, after which the application-
specific plugin will format input files via templates or alternate serialization methods and execute the 
analysis. Once execution is completed, the module will capture the workflow-requested data artifacts and 
cache them in the common model for access by downstream modules. The workflow module responsible 
for general management must be able to execute the applications as directed by the workflow parameters.  
For example, serial execution of the modules may be desired because of computational resource 
limitations. Alternatively, when opportunities for concurrent module execution exist, the workflow 
manager will reduce execution time via concurrent invocation where possible. Scenarios involving 
execution of the workflow, potentially in part, on remote computing resources must also be supported. 



 

 

 

Figure 3. Example serial execution workflow for cross-section, mesh, and neutronics. 

 

Figure 4. Example concurrent execution workflow for cross-section, mesh, and neutronics modules. 

In addition to data exchange and application execution, the NEAMS Workbench workflow module must 
convey plugin input requirements to the user through the workbench’s interactive input editor. Therefore, 



 

 

the module plugin input requirements must be described in an intuitive, extensible, and accessible 
manner. 

3. WORKFLOW SPECIFICATION 

The workflow will be executed by the workflow manager, a Python interface that can use the WASP 
domain-specific language interpreter to process an ASCII workflow description. From the workflow’s 
ASCII input or script instructions, the common model will be populated, modules will be invoked in the 
order requested, and a summary of results will be presented. 

3.1  WORKFLOW INPUT 

The NEAMS Workbench can provide an integrated development environment for application-specific 
inputs. These features include content assistance (input autocompletion and navigation), diagnostics 
(input checking and suggestion), and templating. While the workflow can be scripted via the Python 
workflow manager and associated classes, an ASCII domain-specific input provides a solution that can be 
more easily understood and efficiently used, especially for users without scripting experience.   
 
The workflow input must manage the following application components: 
 

• Plugin-specific parameters used in the application’s analysis  
• Plugin-specific outputs that are artifacts requested by the user and needed by downstream 

modules as prerequisites of their execution 
• Plugin-specific prerequisites that must be fulfilled for successful execution 

 

Figure 5 illustrates an example snippet of a single workflow plugin’s ASCII input. 

 
Figure 5. Example workflow module plugin input sections. 

 
The optional prerequisites section lists components created elsewhere, managed by the common model, 
and required by the plugin. The parameters section provides a location for entry of application input 
options. These parameters can be as explicit as desired by the plugin developer or as simple as a filepath 
to a working application input. The outputs list the artifacts that the plugin must generate for use by 
downstream plugins. Figure 6 illustrates an example ASCII input used for the example workflow 
described in Section 2.  
 



 

 

 
Figure 6. Example workflow for cross section, mesh, and neutronics. 

 
4.  IMPLEMENTATION PLAN 

The proposed workflow requires Python modules for the common model and workflow manager and 
interface classes for each physics code, along with plugin classes that realize each integrated application. 
Additionally, utility modules will be needed to assist in data transformations. For example, code A 
generates an artifact with format X, but the subsequent code B requires the artifact with format Y. A 
utility module will exist to convert the class of artifact (e.g., cross section data) from the X to the 
Y format. 
 
The implementation will occur in the following phases. 

4.1 PHASE 1 - PROTOTYPE 

The initial implementation scope will serve to enable common analysis workflows referencing existing 
application inputs. The initial CommonModel and WorkflowManager classes will be defined, as well as 
the workflow input schema. A pilot workflow will be chosen in consultation with NEAMS teams, and the 
appropriate interface, physics, and data transfer classes will be authored. Phase 1 will conclude with a 
demonstration of the pilot workflow operating standalone and within the NEAMS Workbench on a 
desktop machine. 

4.2 PHASE 2 – INITIAL IMPLEMENTATION 

Phase 2 will seek additional workflows to test the Phase 1 implementation. In parallel, updates will be 
made that will enable physics plugins to communicate parameters to the workflow input. These 
parameters will be used in the application-specific input and will allow workflow authors to reuse 
nominal analysis inputs for greater effect. The plugin parameters system must be robust enough to handle 



 

 

a potential 1 × 1 mapping of the native application input and the plugin parameter input, a problem made 
tractable using programmatically accessible input schemas used by workbench-integrated codes. 
 

4.3 PHASE 3 - ADDITIONAL CAPABILITIES AND FEEDBACK   

Phase 3 will aim to mature the implementation and increase the number of workflow capabilities (plugins, 
utilities, accessible parameters). The implementation will receive an interface usability review, and any 
necessary changes will be supported by published documentation to facilitate ease of extension by 
external collaborators. The ability to run part or all of a workflow on remote computing resources will be 
added. Finally, the NEAMS Workbench Dakota integration, which provides sensitivity analysis (SA), 
uncertainty quantification (UQ), and optimization capabilities [12], will be demonstrated, and any 
required changes will be made to facilitate streamlined user analysis of SA/UQ and optimization. 

4.4 PHASE 4 – INTERACTIVE FLOW DIAGRAM USER INTERFACE 

Once Phase 3 is complete and the interfaces are established, a graphical user interface (GUI) will be 
developed to support a more interactive flow diagramming experience. Graphical widgets will present the 
physics and utility modules and will illustrate the relationship between their input and outputs. The GUI 
has the added benefit of allowing the user to automatically visualize the workflow described in the ASCII 
workflow input. Fundamental operations of the flow diagram user interface are as follows: 
 

1. Create and delete modules  
2. Add and remove data interconnects 
3. Edit module parameters 
4. Arrange module position on the diagram canvas for purposes of visual illustration 

  
5. SUMMARY 

This milestone report proposes the high-level requirements and implementation plan for NEAMS 
Workbench workflows. Through collaboration with teams within the NEAMS campaign and users 
abroad, the workflow components will be developed and improved to realize additional application 
plugins with more complex input parameters. Utilities for managing data exchanges and the 
accompanying input interface will facilitate users’ loosely coupled workflows. 
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